

Project History & Update Towards Developers Assessment Report (DAR)

(Interim)

February 10, 2025

www.pinepointmining.com

1

Overview

- 1. Introduction to the PPML Team
- 2. Zinc in Western Canada
- 3. History & Company Overview
- 4. Pine Point Project Update & Key Milestones
- 5. Geology
- 6. Mining
- 7. Infrastructure & Site Layout Design
- 8. Water Management Strategies
- 9. Tailings Management
- 10. Environmental, Social and Regulatory Considerations
- 11. Closing Remarks

Pine Point is a Zinc-Lead Mine Development Project that could potentially be a top ten global "Clean Zinc Concentrate" producer.

Galvanization is the main use for zinc ...

Why is Zinc a critical mineral?

Cement production creates 8-9% of annual GHG emissions globally!

Zinc galvanization of rebar in cement can extend the life of concrete infrastructure by reducing the necessity of replacing it in 50 years and instead increasing the life to 100-200 years potentially.

Therefore, reducing GHG emissions ...

3. History of Pine Point Cominco era

- **Pre-1885** First mineralization identified on surface during the Klondike Gold Rush
- 1898 First claims staked
- 1899 Area deemed too remote for Zinc and Lead to be mined economically
- **1925-1930 (Cominco)** Early exploration drilling 5 deposits discovered
- **Great Depression and World War 2**
- **1947-1955 (Cominco)** Major Exploration Program New deposits found

4

History of Pine Point | Cominco era and exploration

Infrastructure **1961** Federal Government, Cominco, Canadian National Railways, and Northern Canada Power Corporation Taltson Hydroelectrical system Railway from Edmonton to Pine Point Mine Site 100km of 25m-wide Haulage Roads were built **1963** Completion of Pine Point townsite **1964** Cominco begins mining 51 deposits mined (all east of Buffalo River) 49 open pit 2 underground **1988** Pine Point Mine closes

Exploration

1964-1984

Cominco – New deposits discovered during the mine life

1975-1984

Westmin – New discoveries west of the Buffalo River

Total # of drill holes ~22,000

Cominco Era Mill Site Looking Northeast

Cominco Era

www.pinepointmining.com

"Twinkle Toes"

View Towards Mill Site

From left to right **Bill Kirkpatrick President of Cominco** holding on to Claim Post No.1 **Bill Jewitt President Pine Point Mines** N. R. Crump **CP** Railway Chairman

Cominco Era Site Tour

11

Cominco Era 1985: Y65 First Ore **One of Two Underground Mines**

Massive Pine Point Ore

Core & First Concentrate

Year:	Ore Milled:	Grade of Ore Milled (Lead):	Grade of Ore Milled (Zinc):	Lead Concentrate:	Grade:	Zinc Concentrate:
1965	75,000 tons	4.3 %	7.6%	4,000 tons	?	8,000 tons
1966	1,458,000 tons	4.9 %	10.5 %	79,000 tons	?	241,000 tons
1967	1,521,000 tons	4.7 %	9.7 %	83,000 tons	?	233,000 tons
1968	2,138,000 tons	3.5 %	6.6%	87,000 tons	?	223,000 tons
1969	3,605,000 tons	3.2 %	7.4 %	137,000 tons	75-0 %	431,000 tons
1970	3,860,000 tons	3-0 %	7.1 %	135,000 tons	?	451,000 tons
1971	3,892,000 tons	2.6 %	6.5 %	118,000 tons	?	416,000 tons
1972	3,810,000 tons	2.7 %	6.2 %	119,000 tons	75.5 %	391,000 tons
1973	3,896,000 tons	2.9 %	6.0 %	130,000 tons	?	371,000 tons
1974	4,135,000 tons	2.5 %	5.3 %	123,000 tons	76.8 %	357,000 tons
1975	3,905,000 tons	2-4 %	4.9 %	104,000 tons	78.2 %	301,000 tons
1976	3,773,000 tons	1.7 %	5.3 %	72,000 tons	74-4 %	323,000 tons
1977	3,443,000 tons	2·1 %	5.3 %	85,000 tons	73.5 %	290,000 tons
1978	3,290,000 tons	2.6 %	5.9 %	100,000 tons	76.5 %	302,000 tons
1979	3,291,000 tons	1.9 %	5.5 %	74,000 tons	73.7 %	288,000 tons
1980	3,626,000 tons	1.9 %	5.5 %	82,000 tons	76-0 %	315,000 tons
1981	3,636,000 tons	2-0 %	4.8%	86,000 tons	77.1 %	274,000 tons
1982	2,445,000 tons	2.9 %	7.3 %	85,000 tons	76.5 %	287,000 tons
1983	985,000 tons	2.7 %	8.2 %	32,000 tons	73.8 %	130,000 tons
1984	2,512,000 tons	2.3 %	7.6%	68,000 tons	75.2 %	303,000 tons
1985	2,356,000 tons	3.0 %	8·2 %	83,000 tons	74.7 %	300,000 tons
1986	3,271,000 tons	4.1 %	8.7 %	164,000 tons	73.9%	458,000 tons
1987	3,514,000 tons	3.9%	9.6 %	163,000 tons	77.1 %	533,000 tons
1988	979,000 tons	3.3 %	9.7 %	37,000 tons	78.4 %	152,000 tons
Total:	69,416,000 tons	2.9 %	7.1 %	2,250,000 tons		7,378,000 tons

Cominco Historical Production

Grade:

?

?

?

?

57.0 %

?

?

55.6%

57.6%

56.7 %

57-9%

57.4 %

56.6%

58.5 %

57.3 %

57.7 %

58.4 %

57.3 %

56.9 %

58.7 %

59.2 %

57.5 %

59.5 %

59.3 %

Total for 24 Years: 69.4 Mst or 64.3Mt @ ~ 10% Zn + Pb

14

Pine Point Project Update

Recent history

2003	Tamerlane Expl. acquires R Burns Claims
2005-06	Environmental Baseline Studies
2007	DAR Submitted, Environmental Assessment
2008	Land Use Permit (LUP) issued
2009	Feasibility R-190 deposit west of Buffalo River
2013	Receivership
2016	Darnley Bay acquires project from receivership rebrands as Pine Point Mining Limited (PPML)
2018 Q1	Osisko Metals acquired PPML

hip; 1L)

Project Update

2018-24: PPML Summary

- **2018-24:** Six Year Definition Drilling Program
 - 30-metre spacing for Indicated Resources
 - **2500 drill holes, 167 kilometres** to improve confidence in mineralization
- **2018**, **2019**: Initial Mineral Resource Estimates (MRE's)
- **2020 & 2022:** Preliminary Economic Assessments (PEA)
- April 2023: JV with Appian Capital Advisory LLP
- June 2023: Appian Team and QP Site Visit
- H2 2023: Water Mgmt. / Waste Mgmt. / EA / Synergy Sessions
- **2023-24:** Definition/Trade Off Studies (~ PFS)
- June 2024: Feasibility Study (FS) Resource Base MRE
 - 49.5 Mt of Indicated Resources @ 5.52% ZnEq
 - 8.3 Mt of Inferred @ 5.64% ZnEq:
 - Objective: Convert Inferred Resources During Operational Period to Prolong Mine Life

Current and upcoming activities

- Definition/Trade Off Studies (~ PFS)
- Processing Pre-Concentration (In/Out)
- Defining Throughput Rate
- Detailing Water Management Plan
- Detailing Waste Management Plan
- Waste Rock In Pit or Stockpiles
- **Overburden Piles**
- Tailings "In Pit" & "TSF"

Other initiatives underway

- **2018-2024:** Base Line Environmental
- 2024-25:
 - Q1 2025: Community "Townhall Meetings"
 - Project Description (PD) for DAR
 - Mid 2025: Feasibility Study (FS)
 - Socio Economic Agreement w GNWT
 - 3 Benefit Agreements (IBA's)

Advancing Sustainability with the TSM Initiative

By advancing our Towards Sustainable Mining (TSM) implementation, we demonstrate a commitment to responsible resource development, ensuring long-term asset value, easier capital access, and a competitive edge in the global market.

Leadership in Sustainability

Adoption of TSM signals our alignment with global sustainability best practices, ensuring compliance with evolving expectations from stakeholder, investors, regulators, and international markets.

Risk Management

Meeting TSM standards reduces operational and reputational risks, safeguarding investment against potential disruptions or market pressures.

► TSM aligns with our commitment to transparency and ethical practices, building trust with local communities, regulators, and key stakeholders, which is critical for operational continuity and license to operate.

Protecting Asset Value

► TSM ensures our operations adhere to globally recognized responsible mining practices, mitigating environmental, social, and governance (ESG) risks. This enhances the longterm value and stability of the asset.

Mineral claim holdings

- 2018: Initial PPML Mineral Claims in pink
- 2019: Mineral Claims in blue
 - resulted from Collaboration Agreements

Collaboration was key to Pine Point Mining development project success so far

>

ion

Project schedule | Key milestones

H2 2025	Submit "Developers Assessm Reference" that were asked I This is the beginning of the p
~2028	Objective for approval & per
~ 2029-30	Planned Construction Start
2030	Commissioning or testing of
2030-~2042	Life of mine based on Indicat Exploration and potentially e
~2042	Active Closure: active reclam
~2044-54	Passive Closure: monitoring,

- nent Report" (DAR) that includes answers to the "Terms of by the Environmental Review Board (MVEIRB)
- permitting process
- rmits needed for construction
- mill & operational startup to nameplate design
- ted Resources in Mineral Resource Estimate expand on Inferred Resources
- nation earthworks, soil placement, seeding, etc.
- adaptation and reporting

Pine Point camp

Pine Point camp

Open Ocean

Carbonate **Host Rocks Barrier Reef** Complex

Regional geology

Sedimentary Carbonate Host Rocks

- Pine Point formation in dark blue
- **Sulfur Point formation** in medium blue

All flat lying sediments slightly dipping/tilted

3 to 5 degrees to the west

Mineralization | Deposit types

www.pinepointmining.com

Earlier exploration underestimated the role of structure

Mineralization facies | W85 Prismatic

W85-YBM Prismatic

Surfaces are the base of each formation

Bedrock | Slave Point formation

www.pinepointmining.com

27

Base of Slave Point Formation

Base of Watt Mountain formation

Base of Buffalo River formation

Base of Sulphur Point formation

Host of majority of mineralization

W85 Prismatic with Tabular Apron

Mineralization samples

www.pinepointmining.com

Sphalerite (ZnS)

Mining Methods

- "Open pit" mining east of the Buffalo River in the historical Cominco era Pine Point mining camp where mineralization is located at shallow depths
 - Deposits located west of the river are deeper and planned to be "Underground Mining"
 - Currently 2 deposits would be mined West of Buffalo River
- ~40-45 open pit deposits are planned to be mined in "clusters" or groups
 - That will help with managing water more efficiently
 - In-pit trucks are planned to be 100 t trucks; long-haul trucks are not selected yet
- "Waste Rock Management": Carbonate host rocks that are sterile or have no economic mineralization will be disposed of as much as is possible within Cominco era open pits
 - Also used for constructing roads, pads, or for progressive reclamation when possible.

34

Pine Point Mine Project Development

Example of Waste & OB Piles Criteria

- Maximum pile height: 80m
- Integrate contact water management

Optimization to reduce surface pile footprints

 Deposit Waste Rock in "New" or "Historical" Open Pits Where Practical

Processing plant site

Access to site

Proposed to be through the former Pine Point Town

Fuel storage area

Would be located between the Mill and "Hot Change Area"

Buildings

- Camp and Mill/Concentrator are planned to be steel structures
- Truck Shops & Warehouse are planned to be domes with rigid aluminum frame/fabric

Power plant

Planned to be located near the NTPC Electrical Substation

"Full Milling"

Run of Mine ("ROM") and Stockpile area with Primary Jaw Crusher to be located next to the Mill/Concentrator

Processing plant site layout

Assay Lab

Mine Camp Complex

Main Substation

Main Gate House

www.pinepointmining.com

ROM Pad Ore Storage & Handling Hot Change **Fuel Storage Process Plant Power Plant** Natural Gas & Distribution

Laundry, Rec Room & Welcome Center

Kitchen

-

Processing plant site layout

Projected benefits for the NWT and Economic Viability

~ \$650M in direct revenues to NWT~ \$1.7B of indirect revenues to NWT

www.pinepointmining.com

Per month of delay:

~\$4.5M of direct benefits for GNWT ~\$11.8M indirect benefits is a **"missed opportunity"** that would be pushed forward 12+ years

Processing plant site and access

Access is planned through the town of Pine Point

www.pinepointmining.com

Daily deliveries, staff & visitors + 15 concentrate trucks per day, 7 days per week

Access Option Considered

www.pinepointmining.com

Option 1 Represents the option with the lowest new disturbance

Options 1 & 2 are similar in length

Options 1 & 2 provide lower dust air emissions and less road maintenance during operations than Option 3

Options 1 & 2 reduce the potential interaction between mining operations and traffic to site

Site Access Road

Water Management

Dewatering

- Dewatering groundwater would be pumped from wells drilled around the perimeter of an open pit
- Cominco era ditching system and discharge locations or effluent points
- During operations "contact water" precipitation or runoff that enters the mining areas including water within the open pit – will be managed through a series of pumps, pipes and ditches
- Start-up water is for use in the mill/concentrator would be pumped from an existing open pit

Strategies for minimizing impacts from water discharge

- - •

Injection of dewatering water is being considered for West Zone only

Plan is to use historical open pits as settling ponds when needed to allow suspended solids to settle to the bottom before release. Otherwise known as "Passive Treatment"

Water will be managed in different phases/areas/clusters at different times in the LOM

Dewatering before mining

Gather collect and discharge contact water

Test the water. Once the water quality is deemed acceptable it will be discharged

Monitor water quality before it is released to make sure it is compliant with license

www.pinepointmining.com

Project LIDAR & drainage ditches

Tailings Management

Comparative analysis: in-pit disposal vs surface tailings storage facilities

- For Pine Point mining waste management, two primary methods were considered:
 - In-pit disposal •
 - Surface Tailings Storage Facilities (TSF)

Tailings Management

Environmental Considerations: Company's Perspective

In-pit disposal

- In-pit disposal is suitable for most tailing types offering versatility in waste management
- This method significantly reduces the risk of oxidation, providing better containment of contaminants
- The submerged environment in the pit creates anoxic conditions, inhibiting the oxidation process that leads to ARD
- Less Dust
- Contained within existing Pits

Surface TSF

- Surface TSFs can also accommodate various tailings types but preset a higher risk of ARD unless designed with proper covers or liners
- The exposure to atmospheric conditions increases the potential for oxidation
- Advanced design features such as composite liners drainage systems, and engineered covers can mitigate these risks though at a higher cost and complexity

Environmental, social & regulatory considerations

Scope

The project encompasses mining operations and supporting infrastructure development

Timeline

Key milestones are set throughout the project's development phase

Geographic context

The site is located at the historic Cominco Pine Point location and is close to communities of Hay River, Fort Resolution and Fort Smith

Baseline data collection

Objective

Establish pre-develop conditions

- Water quality and
- Aquatic and aquati
- Wildlife and wildlife
- Vegetation
- Soil
- Air
- Traditional land us

	Methods	Duration
opment environmental		
d quantity	Data loggers, water samples, flow meters, other instruments	
tic habitat	Field measurements and mapping	Multi-year monitoring to capture
life habitat	Aerial surveys and cameras	seasonal variations and
	Field Surveys and Mapping	long-term trends (2023
	Field Surveys and Mapping	to 2025)
	Passive and dust samplers and metrological station	
se and socio-economic	Studies undertaken by Communities	

2023 field sampling locations

2024 Field sampling locations

Community and Indigenous engagement

Engagement

 Regular community meetings and updates, including planned November 2024 meetings

Traditional and Indigenous knowledge

- Incorporating indigenous traditional knowledge into environmental management and mitigation strategies
- Indigenous knowledge reports are being developed by communities with funding support from PPML

Benefit

 Employment, training programs and long-term socioeconomic contributions for local communities

Schedule example

- Permitting starts with the Environmental Assessment
- Followed by the MVLWB Permitting Process
- Typically done one process after the other
- Proposing to do them at the same time as much as is possible
- Could lead to an earlier start-up and associated benefits

Environmental assessment process

Scoping

Identify key issues and indigenous concerns through community consultations

Impact assessment

Evaluate potential impacts on air, land, water and socio-economic/cultural environment

Mitigation measures

Propose solutions to minimize environmental and social impacts

Review and decision

Propose solutions to minimize environmental and social impacts

NORTHWEST TERRITILEST TERRORIES PROINCEIN ALLEIG ATOR MEDIDIOR OFFICIAL AUTUAL ODLILETION

Official

Water License

Waterd Comficato Northwesst Licence Fosse, 2015 190.03 Nurvai Dry 200

be Water Licence. If in Water Licence of Neenlaed in This Water License. ear Remunde. Its leurorecoses of from the Pannen for the nation of minves is canvibe the vey alterreasonal beirlnen de and in a scheble in the for country in alse on the the Instanciace in concratend by Linger.

hirle firm incheate for the outer Liense for the uniscitly fivs t sigh innea one in the tch to ins Elevicio on the culleis that any that dionl.

in the fao of haur achterrings on Matller fran abeer The heanes of diened inc to the and the giral Lioce in Empletion.

Fincendas 15 100 aon the Waters don do Lorention and if the LSCUMied.

viris gaflern alleed in the frem I canfr of the Gutler.

20118 .

Northwest Terrisicsf Center, Northwest Terriotries 2003

n

Re disch tailir

www.pinepointmining.com

Permitting overview

Water License	Land Use License
Regulated by MVLWB	Regulated by MVLWB
Water and waste nanagement including discharge	Land disturbance construction, clearing, setbacks, etc
egulating waster quality harge and waste including ngs management, closure and activities	Regulates Closure plans, wildlife habitat, land setbacks activities

Next steps and conclusions

www.pinepointmining.com

Current status

Baseline studies completed, scoping ongoing, finalizing project description, modelling, assessment and mitigation

Upcoming milestones

Submission of Developer Assessment Report to MVEIRB and MVLWB

Continued engagement

Ongoing engagement with indigenous governments and communities

Moving forward

Commitment to transparency and indigenous and community involvement throughout the DAR/EA process

Community benefits

Local employment

Numerous roles supporting mine operations for residents

Skill development

Hands-on experience for long-term mining and industry careers

Economic growth

Increased local spending and business opportunities

Community investment

Mine support of local infrastructure and social programs

We want to hear from you! We value your input!

Check out our website at www.pinepointmining.com to leave us suggestions

- Helps us understand your needs and concerns
- Improves operations to align with community values
- Builds a mutually respectful relationship

Date of Event / Comment			
	31		
	31		
Category *			
Select	\mathbf{T}		
Other Diseas	Cu a aifu		
Other, Please			
Category not i	isted in the above, please tell us here what you want to share.		
Description			
-	e a description of your comment or concern		

Closing remarks

Next steps and future meetings

- This is not the only time that you can comment
- This is an introduction to the project at this time as we work on feasibility and permitting preparation
- Timeline for upcoming phases of the project
- Information on future community meetings
- Thank you for participating! This is a collaboration for our mutual benefit

PPML encourages feedback going forward, and we will continue to communicate and keep everyone informed with our Pine Pointer Newsletter, Facebook page, and website (www.pinepointmining.com)

HEAD OFFICE: 1100 Ave Des Canadiens de Montreal Suite 300 Montreal, Quebec H3B 2S2

PINE POINT: Northwest Territories Canada XOE OMO

info@pinepointmining.com